翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Steinberg group (Lie theory) : ウィキペディア英語版
Group of Lie type

In mathematics, a group of Lie type is a group closely related to the group, ''G''(''k''), of rational points of a reductive linear algebraic group, ''G'', with values in the field, ''k''. Finite groups of Lie type give the bulk of non-abelian finite simple groups. Special cases include the classical groups, the Chevalley groups, the Steinberg groups, and the Suzuki–Ree groups.
All Lie groups are groups of Lie type, but not vice-versa.
and are standard references for groups of Lie type.
==Classical groups==
(詳細はfields by . These groups were studied by L. E. Dickson and Jean Dieudonné. Emil Artin investigated the orders of such groups, with a view to classifying cases of coincidence.
A classical group is, roughly speaking, a special linear, orthogonal, symplectic, or unitary group. There are several minor variations of these, given by taking derived subgroups or central quotients, the latter yielding projective linear groups. They can be constructed over finite fields (or any other field) in much the same way that they are constructed over the real numbers. They correspond to the series A''n'', B''n'', C''n'', D''n'',2A''n'', 2D''n'' of Chevalley and Steinberg groups.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Group of Lie type」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.